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systems for accurate and cost-effective prediction of human 
health outcomes. Development of increasingly sophisticated 
in vitro tissue models has accelerated in recent years, driven 
by the recognition that conventional two-dimensional (2D) 
cell culture formats do not adequately recapitulate the 3D 
arrangements of cells and extracellular matrix of tissues and 

1  Introduction

1.1  Organotypic cell cultures
An intense area of research aims at improving drug develop-
ment and toxicology assessment by shifting away from tra-
ditional animal studies and towards human relevant, in vitro 
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Summary
Translating in vitro biological data into actionable information related to human health holds the potential to improve 
disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at 
the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regu-
lation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to 
recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional 
responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological 
scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. 
Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a 
systems biology approach to achieve a computational representation of tissue-level physiological responses by inte-
grating empirical data derived from organotypic culture systems with computational models of intracellular pathways 
to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool 
for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. 
On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop 
in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based 
and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, 
government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the 
computational tools required, and the experimental approaches best suited to generating key data. 
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EU-ToxRisk collaborative project (2014-2020) (Daneshian et 
al., 2016). Many successful examples of organ/tissue models 
have been recently reported (Fig. 1) (Adler et al., 2015; Alépée 
et al., 2014; Andersen et al., 2014; Dash et al., 2009, 2013; 
Hawkins et al., 2015; Hogberg et al., 2013; Mortensen et al., 
2016; Pamies et al., 2014; Sarkar et al., 2015; Sellgren et al., 
2014, 2015; Smirnova et al., 2015; Terelius et al., 2015; Torisa-
wa et al., 2014; Walter et al., 2016; Wikswo, 2014).              

1.2  The need for computational analysis of 
data from organotypic model systems 
Despite the great strides made in terms of engineered micro-
environments and novel human cell sources supporting devel-
opment of more physiologically relevant culture models, the 
integration, analysis, modeling, and ultimately application of 
the data generated in such complex model systems remains a 
significant challenge for the research community. 

The field of organotypic cultures seeks ultimately to support 
more patient-relevant drug safety and efficacy testing, and 
human-relevant toxicity screening, mainly by using induced 
pluripotent stem (iPS) cell techniques to produce patient- and 
population-specific organs-on-chips (Esch et al., 2015; van 

organs (Andersen et al., 2014; Dalton and Dougherty, 2013, 
2014). The loss of these mechanical and spatial cues in culture 
alters the physiology and function of cells (Huh et al., 2012a). 
To address these limitations, more physiologically complex 
and relevant cell culture formats have been produced through 
biomedical engineering applications and are variously referred 
to as “organotypic”, “organoid”, or, when microfabrication 
techniques are used, “organ-on-a-chip” or “microfluidic” cell 
culture systems (Benam et al., 2015; Huh et al., 2012b). These 
engineered cell culture systems supported by advances in hu-
man-derived stem cells, aim at developing new tools for broad 
applications in preclinical drug testing and toxicant screening, 
and have been supported by substantial funding initiatives. 
Agencies in the U.S., including DARPA (Defense Advanced 
Research Projects Agency), DTRA (Defense Threat Reduction 
Agency), NIH (National Institutes of Health) and EPA (U. S. 
Environmental Protection Agency) committed almost $200 
million starting in 2011 (Wikswo, 2014). The European Union 
FP7 funded the “Safety Evaluation Ultimately Replacing Ani-
mal Testing” (SEURAT) program (Daston et al., 2015), which 
with funding matched by the cosmetic industry, achieved €50 
million in 2011-2016. This was followed by the €30 million 

Fig. 1: Examples of organotypic cell culture systems 
(A) HepaRG liver cell spheroid stained for actin cytoskeleton and nuclei (red = actin, blue = nuclei). (B) Primary airway epithelial cells  
grown at air-liquid interface (pink = actin, red = mucin, green = cilia, blue = nuclei) in a 3D co-culture with microvascular cells (not shown). 
(C) Micromolded microfluidic device for cell culture on a nanoporous membrane. (D) The HemoShear technology uses cone and  
flow viscometer principles to apply hepatic microcirculation flow and transport parameters over 2 weeks. Hepatocytes in this system can  
be cultured at physiological insulin concentrations (1000fold lower than in static cultures) resulting in retention of insulin sensitivity  
and responses. Hepatocytes develop steatotic changes (Nile Red staining for lipid) under high glucose/high insulin milieus, allowing 
modeling of disease-like states, and exhibit drug-induced toxicity phenotypes like steatohepatitis when treated with therapeutic 
concentrations of amiodarone. (Panel A courtesy of S. Ferguson, NIEHS/NIH; Panels B-C courtesy of S. Grego, RTI International;  
Panel D courtesy of A. Dash, HemoShear) 
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For computational tractability, the number of model compo-
nents derived from existing pathway knowledge and data must 
be kept small while still representing cellular activity with suf-
ficient accuracy to be predictive. Network modeling approaches 
satisfying these constraints have been developed for individual 
cells; however, models representing the multiscale pharmaco-
kinetic/pharmacodynamic processes required to describe bio-
logical responses at the tissue/organ/organism level (Fig. 2) are 
needed.

In the systems toxicology field, the recently introduced 
framework of Adverse Outcome Pathways (AOP) stipulates a 
holistic, systematic extrapolation from empirical data across 
spatial scales (Ankley et al., 2010). The AOP framework en-
ables a systems-level understanding of exposure to a potentially 
toxic substance by describing a cascade of multiscale events 
from exposure to adverse effect, with the goal of a more ef-
fective risk assessment. A multiscale computational modeling 
approach to describing biological processes, which has been 
proposed by multiple groups (Li et al., 2015), has so far been 
limited by the availability of in vitro data at the right scales. 
To date, there has been little effort to model the cell-cell and 
cell-microenvironment interactions reflected in physiologically 
relevant, organotypic tissue models. Bioengineered constructs 
provide for the first time in vitro data of sufficient biological 
complexity to be used in predictive systems biology models of 
human response; thus, we propose that these constructs are inte-
gral to the successful development of such models. 

Duinen et al., 2015). While a multiplicity of organotypic 
cultures has been shown to better recapitulate tissue features 
(Mortensen et al., 2016), there remain the key hurdles of val-
idating these constructs for safety and efficacy screening and 
of their widespread adoption to obtain human-relevant and 
actionable data. This requires a computational approach that 
reliably extrapolates from tissue models to whole organism re-
sponses (IVIVE: in vitro to in vivo extrapolation) and provides 
testable predictions. 

1.3  Systems biology and computational  
modeling 
Computational systems biology approaches aim to accurately 
and predictively model biological systems by applying mathe-
matical tools developed for complex, nonlinear systems:
–	 Nonlinearity is inherent in biology because cell regulation 

and responses to perturbation – while both concentration- 
and time-dependent – involve multiple biochemical path-
ways that may have common nodes and involve parallel, 
redundant, and feedback loop processes. 

–	 Complexity derives from several factors: the number of 
genes and regulatory pathways, multivariate regulation, and 
the range of adaptive physiology and responses over a vari-
ety of scales, both spatial (from molecules to cells to tissue 
to organ) and temporal (from seconds for molecular signals 
to years for degenerative diseases). 

Cell health and function are under the control of complex, dy-
namic regulatory processes at the gene, protein and pathway 
levels. To ensure survival under dynamic micro-environmental 
conditions, normal cellular physiology is highly adaptable. 
Perturbations to these systems (disease, drugs, or toxicants) 
can overcome normal adaptive mechanisms resulting in mal-
adaption and pathology/toxicity (Kleensang et al., 2014). The 
progression from homeostatic cellular physiology to adaptive 
physiology to pathophysiology can be characterized quantita-
tively by measures of gene or protein expression, cellular func-
tion, or morphologic phenotype.

With the advent of high-throughput technologies and 
high-content assays, a systems-oriented approach to biological 
sciences is emerging that represents a shift from the classical 
reductionist approach. Systems biology approaches have been 
developed to analyze large data sets provided by genomics, 
transcriptomics, proteomics, metabolomics, and protein-protein 
interaction (PPI) networks (Auerbach et al., 2015; Bouhifd et 
al., 2013; Church et al., 2014; Ivanov et al., 2007; Kumar et 
al., 2015; Mohsenizadeh et al., 2015; Spirin and Mirny, 2003; 
Wang et al., 2014). The challenge is in the integration and inter-
pretation of these complex datasets. In order to achieve mech-
anistic insight into the underlying biology, this may require a 
priori knowledge such as networks (e.g., causal models). Sys-
tems-wide data and cell type or tissue specific causal network 
models describing key biological mechanisms, such as cell 
stress, proliferation, inflammation, or cell fate can be integrated, 
enabling a systems biology-based quantitative interpretation of 
the underlying in vitro experiment (Martin et al., 2012, 2014; 
Thomson et al., 2013). 

Fig. 2: Outline of hierarchical structure of multiscale  
biological modeling 
Computational models exist for each of the level, having  
an integrated model linking the “spatial dimensions” is the real 
challenge.
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tational test bed. Conversely, with sufficient clinically relevant 
input and after validation of its predictivity, the computational 
model needs to inform which data should be obtained from in 
vitro constructs to get “better” data, not just more data. “Bet-
ter” data are the selected subset of empirical biomarkers that 
are predictive of health impact upon exposure to a substance. 
The value proposition for the vision is improved accuracy of 
IVIVE, reduced cost and time of testing, higher throughput, 
and ultimately, the ability to handle complex mixtures for both 
toxicity and polypharmacy applications (Bulusu et al., 2016; 
Kongsbak et al., 2014).

It is critical, however, that the unperturbed in vitro system 
looks as much like normal healthy tissue as possible, because 
initial conditions will impact how accurately a system man-
ifests outcomes due to perturbations, particularly long-term 
outcomes. Thus, while disease modeling is an ultimate goal for 
this effort, an unmet and immediate need and a key component 
of this technology is a robust definition of “normal” physiology 
and the range of parameters that represent “normal”, so that an 
effect (adverse or therapeutic) can be defined in terms of a per-
turbation of the system from its normal state. 

2.2  Benefits of the proposed approach
Successful implementation of the computational test bed would 
have paradigm-shifting impacts on a number of fields. Toxicolo-
gists have attempted to predictively model xenobiotic responses 
based on chemical structure and a small subset of in vitro assays 
(Mahadevan et al., 2011). It is likely that a computational test 
bed emulating a physiologically intact organism would be more 
biologically relevant and evidence-based with opportunities 
for improved predictivity and decreased dependence on animal 
studies. 

2  Defining the vision

2.1  Towards the replication of human  
physiology
The central theme of the workshop was to determine how best 
to apply the tools of systems biology to organotypic cell cul-
tures in order to achieve a non-reductionist model system that 
is predictive of human responses. There was the understanding 
that computational modeling without inputs from empirical data 
derived from physical models has limited value, yet at the same 
time it was acknowledged that computational modeling efforts 
have traditionally been too “phenotypic” in replicating mecha-
nisms of action. Valuable but more focused computational tools 
have been developed to address the specific needs of toxicology 
risk assessment and screening therapeutic compounds. Further-
more, a gap between approaches intent on modeling molecular/
cellular function on one hand, and tissue/organ function on the 
other, prevents effective use of the increasing amount of data 
collected from more biologically complex and relevant systems 
to enable prediction of the human physiological response to 
drugs and toxicants.

The proposed solution was a comprehensive computational 
test bed, capturing the knowledge of all pathways and cellu-
lar interactions, and able to accurately predict an organism’s 
response from key pieces of empirical information describing 
how a bioactive agent perturbs the system (Fig. 3). This was 
envisioned as “a multiscale computational test bed that rep-
licates human physiology” to capture the breadth of potential 
applications and minimize the hurdles associated with specific 
applications for pharmacology or toxicology. Tissue-level 
measurements from in vitro organotypic constructs will serve 
as the backbone information for the development of the compu-

Fig. 3: The proposed vision of a computational test bed 
The proposed vision of a computational test bed leverages tissue-level data from organotypic cultures as well as intracellular data to 
replicate human physiological response across scales and achieve more accurate predictions.



Grego et al.

ALTEX 34(2), 2017 305

interacting physiological systems that are extremely difficult to 
recapitulate, even in organotypic culture.

The ability to predict clinical outcomes is considered by 
some the most suitable reference for validation. However, iden-
tification of clinically relevant endpoints remains a challenge 
not only in the translation from a cellular endpoint to a clinical 
endpoint, but even more fundamentally, in the identification of 
clinical endpoints associated with unmet clinical needs. Clinical 
data are limited to begin with, and even clearly defining “dis-
ease” is difficult given the aforementioned spectrum of normal, 
adaptive, and pathological physiology. Current disease classi-
fications are typically limited in their ability to appropriately 
stratify a disease based on clinical presentation, adequately 
stage a disease based on how far along a patient has progressed 
(and where they are headed), or estimate the rate of progression 
(velocity) of the disease. Efforts towards modeling disease pro-
cesses, from the clinical domain back towards the underlying 
physiology and eventual molecular processes, will be critical 
in the identification of the endpoints needed to qualify in vitro 
systems and the in vitro endpoints to be measured for accurate 
predictive modeling. 

An additional aspect that impacts the translatability of in vitro 
systems being used as models are concentrations of the drugs 
and even the basic maintenance media in the systems. Often 
these are quite different from corresponding in vivo or clinical 
data, making the baseline control state and perturbations diffi-
cult to replicate, thereby creating challenges in making correla-
tions and predictive modeling. From a regulatory standpoint, 
regulatory conservatism will be a considerable hurdle to over-
come, and it will require robust, consistent, and validated data to 
engender the trust of stakeholders and regulators. 

3.2  The next frontier in computing? 
Biological systems are intrinsically more complex and uncertain 
than engineered systems. In biological systems, variable scale 
dynamics and pathobiology only serve to contribute further to 
their complexity. The computing resources required to simulate 
and predict accurately the time-dependent behavior of human 
biology simply do not exist at present. This modeling cannot be 
carried out even at the individual cell level. 

Consider gene regulation within a single cell. The modeling 
involves huge numbers of variables and stochasticity. The scale 
of the problem can be seen in the case of compressed models 
of gene regulation: if one builds a discrete-time stochastic gene 
regulatory model with 20 genes and assumes binary states 
(“expressed” or “unexpressed”), then the probability transition 
matrix is 220×220. In this example, interest is in the steady state 
distribution of gene expression. This is only for one cell. When 
multiple cell interactions are taken into account, the complexity 
increases considerably. At the other extreme, there are continu-
um-based (partial differential equation, PDE) models of organs, 
fluid dynamics, chemical transport/reaction/diffusion, and tu-
mor growth (Deisboeck et al., 2011). 

Bridging the cellular and organ scales is a challenge both 
mathematically and computationally; determining the uncer-
tainty in predictions across scales adds further complexity, and 
advances in uncertainty quantification in multiscale methods 

In a clinical context, a reliable comprehensive model includ-
ing a wealth of molecular pathways and the networks through 
which they interact will inform novel insights into disease 
processes. Mechanistic models of pathophysiology will lead 
to novel therapeutic target identification. Efficient target vali-
dation could be carried out in vitro, and animal models could 
also be largely replaced for both safety and efficacy screening 
in preclinical drug development. The ultimate aspiration would 
be clinical trials conducted in silico with associated saving 
in time and money. Here, the ability to produce patient-and 
population-specific organs-on-chips with patient- and healthy  
subject-derived iPS cells will be an enabling technology, pro-
viding the means to define the inter-individual variability in 
responses to drugs and toxicants and appropriate parameters for 
in silico modeling thereof.

Moreover, precise definition of key pathway perturbations 
could lead to valuable in silico modeling of rare diseases, en-
abling the identification of potential targets and therapeutics 
without exhaustive screening, and thus lowering the significant 
economic barriers associated with developing therapeutics ad-
dressing rare diseases. By the same token, sensitive populations 
such as children could be better protected by more accurate risk 
assessment. Information derived from the model could also be 
used to define the most relevant endpoints for epidemiological 
studies, possibly even identifying biological pathway perturba-
tions that occur long before diseases present in the clinic and 
therefore addressing the onset of disease. The envisioned in 
silico test bed represents a realistic technology path towards ad-
dressing existing and formidable barriers to improving human 
health by predicting chronic effects or the effects of co-mor-
bidities and polypharmacy (the simultaneous use of multiple 
drugs). This approach would ultimately shift the focus of health 
research from fighting disease to promoting wellness (Hood and 
Price, 2014).

3  Barriers to success

3.1  Validating organotypic cell 
cultures and endpoints
The field of engineered cell culture systems is advancing from 
feasibility demonstration to validation, which is by no means 
straightforward. The assumption that human-derived cells rep-
resent a superior (more predictive) model for human responses 
than animal cells (and intact animal models) has not been ad-
dressed quantitatively in a systematic way across multiple cul-
ture platforms. Validation against existing models may initially 
require the use of species-matched cells (e.g., using murine cells 
in a model construct and validating against live mouse studies), 
although some believe that animal models are not appropriate 
references for validation of human predictivity (Hartung, 2008). 
Another significant issue is verifying the extent to which or-
ganotypic cultures manifest the emergent properties of disease/
toxicity. Emergent properties of complex systems are those 
properties that cannot be ascribed to or predicted from the prop-
erties of individual constituents acting in isolation. Often, full 
manifestation of a pathological phenotype involves multiple 
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modeling and state of the art cellular screening platforms is key. 
Both components need to further advance toward this goal. 

4.1  Experimental approaches 
A diversity of in vitro tissue engineered models presently exist 
that capture specific elements of organ functionalities depend-
ing on their design. For example, spheroid-type constructs 
capture heterotypic cell-cell contacts and can (in some cases) 
benefit from cell-driven self-assembly, whereas nanoporous 
membrane-based constructs are generally needed to recapitulate 
tissue interfaces. Integration of multiple organs in one system 
is a challenge addressed by a specific line of research (Abaci 
and Shuler, 2015; Oleaga et al., 2016). It is possible, however, 
to capitalize on the diversity of approaches and maintain the 
modularity of the engineered constructs, as long as a common 
computational platform is developed so that the data from these 
different constructs, as well as data available from clinical stud-
ies, can be integrated across scales.

The scientific areas of inquiry to which novel organotypic 
cell cultures would add the most value would be those in which 
space (e.g., 3D space within a tissue) and time are central to the 
hypotheses being tested. Broadly speaking, these would fall into 
the areas of development, exposure, and disease. In the case of 
development, heterotypic cell interactions and cell-environment 
interactions are critical for recapitulating the process of devel-
opment in vitro. The longer-lived cultures enabled by certain 
platforms would also benefit the study of development (and 
the perturbation thereof by environmental exposures) as well 
as enable modeling of “mature” tissues for exposure studies. 
Longer-lived cultures would also enable studies of cumulative 
effects of toxicants over time and enable identification of the 
threshold exposures that can trigger the transition from adaptive 

will need to be made. No computational test bed exists that 
comprises all the needed features, as listed in Figure 4. There-
fore, replicating human biology may well be the next frontier in 
computing. 

3.3  Need for collaboration across disciplines
Because of the multiple domains of biology involved and the 
huge computational power required, achieving the vision will 
require a truly multidisciplinary effort including molecular 
biologists, geneticists, cellular biologists, physiologists, pathol-
ogists, clinicians, information scientists, computer scientists, 
and engineers. This workshop began addressing this need for 
cross-disciplinarity by deliberately inviting a diverse group, 
representing equally the four sectors outlined in Figure 5. 

The most salient point raised in the discussion of this topic 
was the need for sustainable collaboration. Personnel certainly 
need to possess education across disciplines, but more impor-
tantly, group interaction needs to be maintained over time to 
achieve meaningful progress across disciplinary lines. This will 
only happen if participants believe that the relevant stakeholders 
are in it for the long haul and effort is managed and financially 
supported by long-term commitments. 

4  Roadmap for the future

Advances in the development of bioengineered 3D multicellular 
constructs provide in vitro data of sufficient quality and depth 
to be used in predictive systems biology models of human re-
sponses. In order to leverage this new source of data to achieve a 
qualitatively new and improved translation of biological data to 
human health, the integration of next-generation computational 

Fig. 4: Features to be incorporated in the development of the 
computational test bed 

Fig. 5: Disciplines and approaches represented in  
the workshop
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algorithms. Model and data reduction methods reduce the di-
mensionality of the space but must be applied with minimal loss 
of relevant biological information. This allows simulation with 
reduced computational power required (Ivanov et al., 2007). 
There is a trade-off here: reducing dimensionality increases 
model stochasticity because it puts relevant variables outside 
the model. 

In addition to internal model stochasticity, modeling complex 
systems faces a second kind of uncertainty, that being the in-
ability to obtain accurate estimates of model parameters. The 
result is an uncertainty class of models, one for each possible 
vector of values for the parameters. Determination of optimal 
diagnoses and therapies will have to take this uncertainty into 
account, the overall task being framed as a constrained opti-
mization problem. Optimal classification (Dalton and Dough-
erty, 2013), optimal control (Pal et al., 2009), optimal filtering 
(Dalton and Dougherty, 2014), and optimal experimental design 
(Dehghannasiri et al., 2015) under model uncertainty will likely 
play major roles in the path forward. 

Methods need to be developed to integrate new types of da-
ta into PBPK/PD models. This will involve improved exper-
imental design, computational algorithms, and new types of 
modeling, for instance, the use of hybrid systems that merge 
the continuous differential equations of interaction/transport at 
higher levels with the discrete state transformations typically 
used in modeling biological pathways. 

Some efforts have been made to this end. Computational 
modeling of physical phenomena can be leveraged to accurately 
describe exposure. For example, computational fluid dynam-
ics-based description of compound deposition in the respiratory 
tract (Frederick et al., 2002) yields improved accuracy in the 
description of absorption for toxico-pharmacokinetic models 
(Campbell et al., 2014). 

The metabolism of a compound within each tissue can be 
described by enhanced PD (ePD) (Iyengar et al., 2012). In the 
ePD framework, the drug target network is modeled accounting 
for enzymatic and metabolic reactions, epigenetic/genetic fac-
tors, and/or post-translational modifications. The goal of ePD 
is to enable prediction of drug/toxicant responses for individual 
subjects with different genetic and epigenetic backgrounds. In 
the context of modeling data derived from organotypic systems, 
ePD could enable the genetic background of the cells used to be 
taken into account (Thomson et al., 2013).

However, simply combining these elements is not sufficient 
to produce a “comprehensive” computational test bed. In partic-
ular, linking different biological scales in a coherent framework 
remains a challenge. Even with approaches to achieve efficient 
computational operations, more powerful computing capacity 
will be needed so that models can at least be sufficiently large to 
incorporate basic pathways relating to the etiology of disease, to 
operate across scales, and to address basic engineering control 
problems that become extremely computationally intensive in 
stochastic environments. 

There is therefore a need to design appropriate platforms that 
include specialized architectures: for example, a new operating 
system may need to be developed that is optimized for com-

response to pathology, both of which are largely neglected by 
conventional toxicology at present. The same advantages (time, 
tissue orientation) would increase the sophistication of disease 
models in vitro, particularly for studying metastasis, as well as 
progressive disease spectrum states, e.g., fatty liver and non-al-
coholic steatohepatitis (NASH).

4.2  Probabilistic modeling across scales
The central challenge is how to build a computational test bed 
that provides accurate predictions of in vivo human outcomes 
using data from organotypic culture models. For example, phys-
iologically rich datasets from organotypic models may augment 
qualitative descriptive pathway models such as stochastic ac-
tivity networks (Mounts and Liebman, 1997; Tsavachidou and 
Liebman, 2002) by providing a means to test hypotheses and 
introduce quantitative information. This requires not only good 
computational models, but also determining the appropriate ex-
perimental readouts to adequately describe processes occurring 
at molecular, cellular, organ, and whole body scales. Probabi-
listic models that capture the stochasticity inherent in complex 
systems are the most predictive for complex cellular behaviors 
associated with disease and drug targets such as proliferation, 
migration and inflammation (Stokes et al., 2015). On the other 
hand, physiologically based pharmacokinetic (PBPK) models 
based on deterministic approaches are well suited to describe 
absorption, distribution, metabolism and excretion. 

A computational test bed replicating human physiology will 
likely be a hybrid of deterministic and probabilistic models. 
Pieces of such an integrated approach exist now as free-standing 
computational models, but they have yet to be integrated for 
this purpose. One approach to developing the test bed would be 
to build upon the existing framework of physiologically based 
pharmacokinetic/pharmacodynamic models (PBPK-PD) that 
describe organ- and whole body-level processes via hierarchical 
integration of probabilistic models.

A chief barrier is the lack of a common language and frame-
work to meaningfully integrate knowledge across scales. Fur-
ther, the readouts of current PBPK-PD models tend to be single 
drug targets (i.e., a receptor or enzyme); future models should 
represent perturbed networks/pathways. In short, the goal is to 
move PD and toxicodynamics models from single molecular 
initiating events to dynamic network perturbations. Carefully 
designed organotypic cultures are enabling the generation of the 
data required to describe these networks of events. 

4.3  Computational tools/methods
A systems biology approach to the development of the compu-
tational test bed will enable predictive biological insights from 
complex datasets, as well as application of information control 
methods, achieving objectives such as classification (diagnosis) 
and control (therapy) in an optimal manner while relying on a 
mechanism-based framework (as opposed to purely empirical 
methods). 

As noted previously, modeling biological systems faces huge 
computational obstacles owing to network complexity, stochas-
ticity, and the need to apply pattern recognition and control 
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