SUMMATION UND TETANUS AM MENSCHEN

Hans Oetliker
Physiologisches Institut
der Universität Bern
Bühlplatz 5
3012 Bern

ZUSAMMENFASSUNG

Dieser Beitrag befasst sich mit den Bestrebungen, einen Organversuch aus der Neuro- und Muskelphysiologie im Ausbildungsprogramm für medizinische Berufe durch ein Experiment zu ersetzen, welches die Studenten an sich selber durchführen können.


Nach unseren Erfahrungen wurde der Versuch von den Studenten sehr gut aufgenommen.

Die Lerninhalte, welche mit dem vorherigen Organversuch vermittelt werden sollten, lassen sich nach Meinung des Autors, wenn auch nicht so einfach wie zuvor, qualitativ aber ebenso gut vermitteln.

Der Umstand, dass der Studierende die Information an seinem eigenen Körper erarbeiten kann, macht den scheinbaren didaktischen Nachteil der wesentlich komplexeren Versuchsanordnung (Nervenreizung, Nerv-Muskel-Übertragung, Reflexe) bei weitem wett.
VOREMERKUNGEN

Allgemeines


Adressatenkreis

Lernziele

a. Der Versuchsteilnehmer soll Einblick erhalten in die Zusammenhänge zwischen Erregungsmuster und mechanischer Antwort der Skelettmuskulatur und deren Bedeutung für die Bewegungskontrolle.
b. Er soll erklären können, über welche grundlegenden Mechanismen die Kraftentwicklung in einem Skelettmuskel moduliert wird.
c. Er soll imstande sein, an sich selber den Einfluss von Reizstärke und Frequenz der Reizung nachzuweisen.

Kosten


VERSUCHSANLEITUNG

Einleitung und Versuchsziel

Um Länge und Spannung (Tonus) unserer Skelettmuskulatur zu variieren, oder anders ausgedrückt, geordnete Bewegungen auszuführen oder eine einmal eingenommene Körperstellung beizubehalten, bedient sich unser zentrales Nervensystem im wesentlichen zweier Mechanismen. Die von einem Muskel produzierte Spannung kann durch Aktivierung einer variablen Anzahl von Muskelfasern, jeweils in "Quantelung" einer motorischen Einheit, verändert werden. (Unter motorischer Einheit versteht man alle von ein und derselben motorischen Nervenfaser versorgten Muskelfasern. Bei Augenmuskeln z.B. ist diese Zahl sehr klein, bis zu einer Muskelfaser pro Nervenfaser, während bei Muskeln, die keine feinen Bewegungen ausführen müssen, jedoch grosse Kräfte auszuüben haben, eine Nervenfaser mehrere hundert Muskelfasern versorgen kann). Die Grundlage für die "Quantelung" ist, dass eine Erregung oder ein Aktionspoten-

Die zeitliche Summation beruht darauf, dass in einem Nerv und ebenso an der Oberflächenmembran eines Muskels eine zweite, dritte bis n-te Erregung ausgelöst werden kann, lange bevor der durch die erste Erregung ausgelöste Kontraktionszyklus der Muskelfaser abgeschlossen ist. Daher können die einzelnen sich folgenden Muskelkontraktionen summiiert werden. Die Muskelspannung kann so durch willkürliche oder künstliche Modulation der Reizfrequenz zwischen "normalem Muskeltonus" und maximaler tetanischer Kraftentwicklung verändert werden.


Mit der in diesem Versuch angewandten künstlichen Reizung von motorischen Nervenfasern mit Oberflächenelektroden ist es jedoch nicht möglich, einzelne motorische Einheiten selektiv zu aktivieren, wie wir dies mit etwas Übung willkürlich tun können.

motorische Fasern direkt gereizt werden, und größer als man aufgrund der Fortleitungsgeschwindigkeit einer motorischen Faser erwarten würde.

Apparative Voraussetzungen

Die Reizung des peripheren Nervs wird mit einem Reizgerät bewerkstelligt, welches aufgrund der sehr hohen Reizspannungen (bis 500V) erlaubt, für die Reizung sehr kurze Reizzeiten, (<200 µs) zu verwenden (Entwicklung D.Dellmo-ge). Dies hat nach unseren Erfahrungen den Vorteil, dass Schmerzfasern praktisch nicht gereizt werden. Die Spannungstransienten des Muskels werden über einen Dehnungsmessstreifen mit entsprechender Elektronik in einem digitalen Speicherosilloskop zwischengespeichert und anschließend mit einem digitalen Plotter (Advance Brian) auf Papier kopiert (Spezialanfertigung der Firma Messdata). Der Kopiervorgang benötigt für 2 Spuren ca. 1 Minute.

Versuchsaufbau und Vorbereitungen

Damit die vom M. adductor pollicis entwickelte Kraft möglichst isoliert registriert werden kann, wird die rechte Hand der Versuchsperson mit der Handfläche nach oben durch einen Bügel auf ein Brett fixiert. (Abb.1.) Die Fixierung kann zusätzlich verbessert werden, indem mit einer Halbkugel aus Holz die Handfläche auf die Unterlage gedrückt wird. Der rechte Daumen wird über eine Halterung so mit einem mechano-elektrischen Kraftwandler verbunden, dass beim Anziehen des Daumens gegen die Handfläche bequem über das senkrecht nach oben gehende Gestänge auf den Transducer Kraft ausgeübt werden kann. Da der Transducer eine kleine Compliance (ΔLänge/ΔKraft) hat, darf für praktische Zwecke davor ausgegangen werden, dass die Registrierung isometrisch erfolgt, d.h. Kraftänderungen ohne wesentliche Längenänderungen des Muskels gemessen werden.

Durchführung der Messungen

Registrierung von willkürlich ausgelöster Muskelaktivität

Die Zeitablenkung des Speicheroszilloskops wird so eingestellt, dass der Strahl 2 sec braucht, um von links nach rechts den ganzen Schirm zu bestreichen. Die Versuchsperson wird angehalten, selber den Strahl zu starten und innerhalb von zwei Sekunden so kurz und schwach wie möglich und sogleich danach so stark wie möglich während maximal 1 sec Kraft gegen die Daumenhalterung zu entwickeln. Dieser Teil des Versuchs hat zwei Ziele:


Registrierung von Einzelzuckungen, Bestimmung der Schwelle und der supramaximalen Reizstärke

WAR DAS WIRKLICH SO GEMEINT?
Abb. 3: Einfluss der Reizstärke auf die Zuckungsamplitude. Die Reizparameter sind bei den einzelnen Kurvenzügen, welche jeweils um 200 ms in der Zeit verschoben worden sind, angegeben. Zeit/Div- 200 ms

Abb. 4: Einfluss des Reizintervalls (Zahl in ms bei der jeweiligen Registrierung) bei Doppelreizung mit supramaximaler Reizstärke auf die Amplitude der Summenantwort.
Summation von Einzelzuckungen

Durch Applikation von Doppelreizen mit verschiedenen zeitlichen Abständen kann untersucht werden, wie sich die Überlagerung von zwei Einzelzuckungen auf die Maximalamplitude auswirkt.

Einfluss der Reizfrequenz auf die Kraftentwicklung bei tetanischer Reizung

Das Reizgerät wird so eingestellt, dass Serien von 3 bis 30 Reizen mit unterschiedlichen Zeitintervallen zwischen den Einzelreizen appliziert werden können (tetanische Reizung).


Eichung

Durch Anhängen von Gewichten an die Daumenschlaufe des Transducer können die vorerst noch relativen, in V angegebenen Beträge für das Mechanogramm in Newton geeicht werden.
SCHLÜSSELBEMERKUNGEN


2.) Es ist auf den ersten Blick erstaunlich, dass mit tetanischer Reizung die maximale Amplitude nicht erreicht wird, welche bei der willentlichen Auslösung (Fig.1) erreicht werden kann. Dies scheint damit zusammenhängen, dass bei künstlicher Reizung aus allen Muskeln, welche auf den Transducer Kraft übertragen können, praktisch nur der M. adductor pollicis aktiviert wird, während bei willkürlicher Aktivierung die ganze Hand- und Fingermuskulatur versteift wird, was zu einer wesentlich besseren Effizienz der Kraftübertragung auf den Transducer führt.

3.) Trotz dieser partiellen Unzulänglichkeiten scheint mir, neben der Einsparung von Fröschen als Tiere für Organentnahmen, einer der zusätzlichen Werte dieses Versuchs in der Möglichkeit zu liegen, dass der Student die Antwort auf genau definierte Erregungsmuster mit der Antwort auf willkürliche Aktivierungen, deren Erregungsmuster er nicht kennt, vergleichen kann. So ist es, allerdings in engen Grenzen, möglich, Rückschlüsse auf die Art der Codierung der Signale für die Muskelaktivierung zu erhalten. Interessierte können mit dem Oszilloskop als Feed-back-Instrument lernen, willentlich einzelne motorische Einheiten zu aktivieren.

4.) Der Versuch am Menschen ist wegen der ausschliesslich indirekten Reizung (Über Nerv) und der damit zusammenhängenden gelegentlichen Erregung des Muskels über das Rückenmark für den Studenten weniger leicht durchschaubar als der Versuch am Froschmuskel. Diesem Umstand ist dadurch Rechnung getragen worden, dass der Versuch vom ersten Studienjahr in das zweite verlegt wurde. Zu diesem Zeitpunkt verfügen die Studenten aus der Vorlesung über mehr Information zum Verständnis dieser Zusammenhänge. Zudem ist der Wert dieser zusätzlichen, wenn auch etwas komplexeren Information, die am isolierten Organ nicht vermittelt werden kann, und der Bezug zur späteren klinischen Tätigkeit nicht zu unterschätzen.