Cell Culture Model for Colon Cancer Prevention and Therapy: An Alternative Approach to Animal Experimentation

Nitin Telang and Meena Katdare

1Strang Cancer Prevention Center, New York, USA; 2Weill Medical College of Cornell University, New York, USA

Summary
Mouse models for colon cancer that harbor a germ line mutation in the tumor suppressor gene Adenomatous polyposis coli (Apc) exhibit a primary genetic defect that predisposes to a high incidence of adenomatous polyps in the small intestine rather than in the colon. Colon cell culture models expressing quantifiable markers for carcinogenic risk may represent an alternative approach to reduce, refine or replace long-term animal experimentation. The newly developed colon epithelial cell lines 1638N COL-Clj (clonal derivative of the parental Apc mutant cell line 1638N COL) and 1638N COL-Pr1 (tumor derivative of the clone), established from an Apc1638N +/- mutant mouse, exhibit aberrant cell cycle progression, down-regulated apoptosis, enhanced carcinogenic risk and tumor formation, indicating that aberrantly proliferative preneoplastic 1638N COL-Clj cells exhibit a quantifiable risk for carcinogenesis. Treatment of these preneoplastic Apc mutant cells with a combination of celecoxib and 5-fluorouracil at clinically achievable low concentrations produced a 2.1 fold to 5.5 fold higher efficacy for cytostatic growth arrest and a 40.2% to 52.4% higher efficacy for inhibition of carcinogenic risk, relative to that obtained by these agents used individually. Thus, a low dose combination of mechanistically distinct agents resulted in enhanced efficacy. These data validate a novel cell culture model and a rapid mechanism-based approach to prioritize efficacious drug combinations for animal studies and clinical trials on cancer prevention and, thereby, support the 3R concept by refining and/or reducing the use of animals in biomedical research relevant to prevention/therapy of colon cancer.

Keywords: APC mutation, colon cancer risk, prevention

1 Introduction
Colon cancer is a multi-step, multi-factorial disease where genetic, environmental and dietary factors exert a profound effect on etiology, pathogenesis and preventive/therapeutic intervention (Potter, 1996). Traditionally, animal models such as azoxymethane (AOM)-induced rat colon cancer or in adenomatous polyposis coli (Apc) gene mutant mice have been utilized as preclinical approaches for the evaluation of toxicity and efficacy of potential preventive/therapeutic agents (Corpet and Pierre, 2003). Rational selection of relevant alternative approaches may reduce, refine or replace the need for
extensive long-term animal experiments on colon carcinogenesis and its prevention.

The germ line mutation in the tumor suppressor Apc gene represents a primary genetic defect responsible for clinical familial adenomatous polyposis (FAP), a high-risk syndrome for early onset colon cancer (Fodde et al., 2001; Fearon and Vogelstein, 1990). Apc mutant mice, however, exhibit adenomas and carcinomas predominantly in the small intestine, rather than in the colon (Moser et al., 1990; Fodde et al., 1994). The predominance of carcinogenesis in the small intestine of Apc mutant mice represents a target site distinct from that for clinical colon cancer, and hence data generated from these models require extrapolation to determine their clinical relevance.

Reliable cell culture models established from the appropriate target organ site, that express a clinically relevant genetic defect, and exhibit quantifiable markers of risk for carcinogenesis are expected to offer alternative approaches that may reduce or refine animal experiments, minimize necessary extrapolation and, thereby, complement in vivo animal studies. Such cell culture studies may also identify a rapid mechanism-based approach to evaluate the potential efficacy of agents that inhibit, delay or reduce the incidence of colon cancer.

The Apc

mouse, which harbors a germ line mutation in the Apc tumor suppressor gene, exhibits a high incidence of intestinal adenomas (Moser et al., 1990) that are susceptible to growth inhibition by several chemopreventive agents used independently or in combination (Jacob et al., 2000; Torrance et al., 2000; Swamy et al., 2006). It is also noteworthy that pharmacological (Saez et al., 1998; Paulson et al., 2001) or genetic (Rao et al., 2005; Sodir et al., 2006) manipulation leads to colon cancer in the Apc

mice, indicating that multi-step colon carcinogenesis is inducible in this model.

Recent cell culture studies using murine cell lines have demonstrated that histopathologically normal colon epithelial cells expressing mono-allelic mutations in the Apc gene (Kadare et al., 2002), or in Apc and Mlh1 genes (Telang et al., 2006), exhibit aberrant proliferation and enhanced risk for carcinogenesis. Furthermore, these mutant cells are also susceptible to growth inhibition by several chemopreventive agents used either individually or in combination (Katdare et al., 2002; Telang et al., 2006; Telang and Katdare, 2007).

The present report summarizes recent experiments conducted on a newly developed colon epithelial cell culture model for FAP to: i) characterize the model with regard to the extent of aberrant proliferation and risk for spontaneous carcinogenic transformation and ii) evaluate the susceptibility of the model to inhibition of growth and reduction of carcinogenic risk by a combination of mechanistically distinct preventive/therapeutic agents. The outcome of the present study demonstrates that the clonally selected, aberrantly proliferative Apc mutant 1638N COL-Cl cells display a defined risk for carcinogenesis and that combination of mechanistically distinct preventive/therapeutic agents given at low concentrations leads to enhanced efficacy of growth inhibition and to a greater reduction of the risk of carcinogenesis, relative to that produced by these agents used independently.

2 Materials and methods

2.1 Cell lines

Apc

C57 COL (Source: normal descending colon of C57BL/6j mouse), 1638N COL-Cl (Source: Apc mutant clonal derivative from parental Apc

C57BL/6j COL cell line) and 1638N COL-Pr (Source: tumor-derived cells from transplantation of 1638N COL-Cl; cells) were grown in DME/F12 medium supplemented with 10% heat-inactivated fetal calf serum, 0.24 IU/ml (10 μg/ml) insulin and 1 μM dexamethasone. The culture medium also contained the antibiotic mixture (100 IU/100 μg/ml penicillin/streptomycin +50 μg/ml fungizone +50 μg/ml gentamycin). Routinely, the stock cultures of all the cell lines were maintained at 37°C in a humidified atmosphere of 95% air: 5% CO2, fed with fresh medium every 48 hr and sub-cultured at 1:10 split at about 70-80% confluency (Katdare et al., 2002).

2.2 Population doubling time, anchorage-independent colony formation and tumorigenicity

These end points were measured using previously optimized assays (Telang et al., 1990; Jinno et al., 1999; Katdare et al., 2002 and Telang et al., 2006). Population doubling time (PDT) was calculated from the exponential growth phase. Viable cell counts were obtained at 24, 48, 72 and 96 h post-seeding of 1×105 cells. These time points cover the exponential growth phase of the cell lines.

For the anchorage independent colony formation (AICF) assay, cells were suspended at the initial seeding density of 100 cells/well in 0.33% agar made up in DME/F12 medium. This cell suspension in agar was overlaid on a basement layer of 0.6% agar in six well cluster plates. The cultures were maintained at 37°C, and the numbers of anchorage independent colonies per well were determined at day 14 post-seeding (Telang et al., 1990; 1991). For the tumorigenicity assay 1×106 cells suspended in 0.1 ml of the culture medium were injected sub-cutaneously in the flank region of C57BL/6j mice. The transplant site was palpated at weekly intervals, and palpable tumors were excised at 1 cm diameter. The primary tumor cells were expanded in culture to establish the tumor-derived 1638N COL-Pr cell line using previously optimized culture conditions (Telang et al., 1990).

2.3 Cell cycle analysis

The status of cell cycle progression was determined by monitoring percent distribution of cells in sub G0, G1/G0, S, and G2/M phases of the cell cycle (Jinno et al., 1999; Katdare et al., 2002). The cell cycle data was expressed as S+G2/M (proliferative, P): sub G0 (apoptotic, A) ratio.

2.4 Preventive/therapeutic test compounds

The selective COX-2 inhibitor celecoxib (CLX) and selective thymidylate synthase inhibitor 5-fluorouracil (5-FU) were used as prototypical test compounds because of their documented preclinical and clinical efficacy in prevention/therapy of colon cancer (Jacob et al., 2000; Steinbach et al., 2000 and Dia-
3.2 Apc mutant cells exhibit altered cell cycle progression
The aberrant proliferation in the Apc mutant cells was associated with an increase of the cell population in the S+G2/M phase of the cell cycle and a decrease in the sub G0 (apoptotic) population. Thus, relative to that observed in the C57 COL cells, the 1638N COL-Cl1 and 1638N COL-Pr1 exhibited an 89.4% and 152.8% increase in the cell population in the S+G2/M phase of the cell cycle. In addi-

Table 1: Aberrant proliferation and carcinogenic transformation in Apc mutant colon epithelial cell lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>PDT a (hr)</th>
<th>AICF b (%)</th>
<th>Tumour Incidence c (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57 COL</td>
<td>34</td>
<td>0/12</td>
<td>0/10</td>
</tr>
<tr>
<td>1638N COL-Cl1</td>
<td>15</td>
<td>12/12</td>
<td>10/10</td>
</tr>
<tr>
<td>1638N COL-Pr1</td>
<td>12</td>
<td>12/12</td>
<td>5/5</td>
</tr>
</tbody>
</table>

a Population doubling time (PDT) determined from the exponential growth phase.

b Anchorage independent colony formation (AICF) determined from the number of colonies at day 14 post-seeding. Number of wells with colonies/Total wells.

c Tumour incidence determined after sub-cutaneous transplantation of 1x10⁶ cells in C57BL/6J mice.

Tab. 2: Aberrant cell cycle progression in Apc mutant colon epithelial cell lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>S+G2/M (P) a</th>
<th>Sub G0 (A) b</th>
<th>P:A Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57 COL</td>
<td>24.6±3.3 b</td>
<td>4.3±1.1 c</td>
<td>5.7</td>
</tr>
<tr>
<td>1638N COL-Cl1</td>
<td>46.6±1.9 e</td>
<td>0.6±0.4 f</td>
<td>77.7</td>
</tr>
<tr>
<td>1638N COL-Pr1</td>
<td>62.2±3.0 g</td>
<td>0.3±0.2 h</td>
<td>207.3</td>
</tr>
</tbody>
</table>

a Mean ± SD, n=6 per cell line.
b,c,e,f p=0.02, c,d,e,g p=0.01.

Tab. 3: In vivo pharmacokinetics and in vitro dose response of preventive/therapeutic compounds

<table>
<thead>
<tr>
<th>Agent</th>
<th>Plasma Levels (range, µM)</th>
<th>1638N COL-Cl1 (IC50, µM) a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical</td>
<td>Experimental</td>
</tr>
<tr>
<td>CLX b</td>
<td>2.5-10.0</td>
<td>3.0-5.7</td>
</tr>
<tr>
<td>5-FU c</td>
<td>3.0-10.0</td>
<td>5.0-10.0</td>
</tr>
</tbody>
</table>

a Determined from the concentration range of 0.01-100 µM. Mean ± SD, n=6.
b Jacobsy, R. F et al., Cancer Res. 60, 5040-5044, 2000.
tion, the Apc mutant cells exhibited an 86.0% and 93.0% inhibition in confluency-dependent spontaneous apoptosis. The cell cycle data, expressed as P:A ratio, revealed a progressive increase in favor of proliferation (Tab. 2).

3.3 Apc mutant cells are susceptible to growth inhibition by a combination of preventive/therapeutic compounds

The experiments presented in Table 3 compared the efficacy of growth inhibition by CLX and 5-FU in the Apc mutant clonally derived preneoplastic 1638N COL-Cl cells, determined by the IC₅₀ values, to the published in vivo clinical and experimental pharmacokinetic parameters that were determined by measuring the plasma levels of the two agents. These comparative data demonstrate that the IC₅₀ values are within the pharmacologically achievable range.

The experiments presented in Table 4 examined the effects of CLX and 5-FU independently and in combination on the clonally derived Apc mutant preneoplastic 1638N COL-Cl₁ cells. The status of the viable cell population and AICF represented the quantitative end points. A low dose combination of CLX+5-FU at IC < 20 exhibited 2.1 to 5.5 fold increased efficacy for growth arrest, relative to that obtained by these compounds used independently. In addition, the data obtained from the AICF assay demonstrated that the CLX+5-FU combination was 40.2% to 52.4% more efficacious than the two compounds used independently.

3.4 Combination of preventive/therapeutic compounds alters cell cycle progression

The experiments presented in Table 5 examined the status of cell cycle progression in clonally derived Apc mutant preneoplastic 1638N COL-Cl₁ cells in response to treatment with low dose CLX and 5-FU independently and in combination. The CLX+5-FU combination induced an at least 80.7 to 105.7% increase in the cell population at G₁ phase and 38.1 to 41.4% decrease in the cell population at the S+G₂/M phase of the cell cycle relative to that observed with CLX and 5-FU used independently.

4 Discussion

In an effort to minimize indiscriminate use of animal testing, the 3R concept strives to replace, reduce or refine the existing in vivo animal models (Russell and Burch, 1959). In the area of colon cancer prevention the rat model for chemically induced colon cancer and the Apc mutant mouse model for spontaneous intestinal cancer remain the most extensively used preclinical models (Corpet and Pierre, 2003). However, unlike the clinical FAP syndrome for colon cancer, the Apc mouse models exhibits carcinogenesis predominantly in the small intestine rather than in the colon (Moser et al., 1990; Fodde et al., 1994), thus, requiring extrapolation of the data to determine their clinical relevance. These aspects emphasize a need to develop alternative models that express clinically relevant genetic defects (Apc mutation) at the appropriate target organ site (colon), and exhibit a quantifiable risk for carcinogenesis.

Most of the existing cell culture models relevant to genetically predisposed syndromes of colon cancer are developed from clinical colon cancer cell lines that exhibit genetic defects in Apc (Ilyas et al., 1997) or DNA mismatch repair genes (Meyers et al., 2001). Fully transformed tumor cell phenotype of these models offers only a limited advantage in studies focused to identify early occurring molecular/genetic events that predispose to the multi-step carcinogenic process by enhancing the risk of cancer development. Existing animal models for the genetic predisposition exhibit carcinogenesis predominantly in the small intestine, rather than in the colon (Moser et al., 1990, Fodde et al., 2001), thus differing in the target organ site from that in the early onset clinical colon cancer. In contrast, the present cell culture model ex-

Tab. 4: Inhibition of aberrant proliferation in Apc mutant colon epithelial 1638N COL-Cl₁ cell line

<table>
<thead>
<tr>
<th>Agent</th>
<th>Concentration (µM)</th>
<th>Inhibition (% of Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Viable Cell Number a</td>
</tr>
<tr>
<td>CLX</td>
<td>1.0</td>
<td>7.9</td>
</tr>
<tr>
<td>5-FU</td>
<td>0.1</td>
<td>16.5</td>
</tr>
<tr>
<td>CLX+5-FU</td>
<td>1.0+0.1</td>
<td>51.4</td>
</tr>
</tbody>
</table>

| a Number of viable cells in solvent controls on day 5 post-seeding: 49.5±3.1×10⁶. Mean ± SD, n=6 per treatment group. |
| b Anchorage independent colony formation (AICF). Number of anchorage independent colonies in solvent controls on day 14 post-seeding: 18.1±1.1. Mean ± SD, n=12 per treatment group. |

Tab. 5: Regulation of cell cycle progression in Apc mutant colon epithelial 1638N COL-Cl₁ cell line

<table>
<thead>
<tr>
<th>Agent</th>
<th>Concentration (µM)</th>
<th>Phase of Cell Cycle a (%)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G₁</td>
<td>S+G₂/M</td>
</tr>
<tr>
<td>CLX</td>
<td>1.0</td>
<td>32.1</td>
<td>67.9</td>
</tr>
<tr>
<td>5-FU</td>
<td>0.1</td>
<td>28.2</td>
<td>71.8</td>
</tr>
<tr>
<td>CLX+5-FU</td>
<td>1.0+0.1</td>
<td>56.0</td>
<td>42.0</td>
</tr>
</tbody>
</table>

| a Determined from at least 10⁴ fluorescent events at day 5 post-seeding. Mean n=6 per treatment group. |
presses a clinically relevant genetic defect (ApC mutation) in cells established from the appropriate target organ site (histopathologically normal colon), and exhibit a quantifiable risk for carcinogenesis (AICF in vitro and tumorigenicity in vivo). Thus, these observations strongly suggest that the present cell culture model uniquely facilitates identification of clinically translatable mechanistic leads with minimal extrapolation.

The outcome of experiments designed to characterize the present model clearly demonstrated that the clonally derived ApC mutant preneoplastic 1638N COL-Cl1 and the tumor derived 1638N COL-Pr cells exhibit a progressive decrease in PDT, increase of the cell population in the S+G2/M phases of the cell cycle, and decrease in confluency-dependent spontaneous apoptosis. In this context it is noteworthy that, similar to the present data, a previously published study on the aberrantly proliferative parental 1638N COL cells (Kadare et al., 2002) has demonstrated that ApC mutant cells exhibit aneuploidy, increased population doublings and decreased G2/G1:S+G2/M ratio. Similar alterations have also been reported in mammary epithelial cells transfected with ras, myc or Her-2/neu oncogenes (Telang et al., 1991; Telang et al., 1990; Kadare et al., 2003). Thus, these observations suggest that down-regulation of the tumor suppressor ApC gene expression or aberrant over-expression of ras, myc or HER-2/neu oncogenes may represent a primary genetic defect responsible for aberrant proliferation.

The experiments conducted to evaluate the risk of carcinogenesis utilized AICF in vitro and tumor incidence upon transplantation as the quantitative end points. The data generated from these experiments demonstrated that the ApC mutant cells exhibit a higher incidence of AICF in vitro and tumor formation in vivo in comparison with the wild type ApC [+/+] C57 COL cells that tested negative for both these end points. These data are consistent with those from previous studies on mammary epithelial cells where targeted over-expression of ras, myc or HER-2/neu oncogenes results in AICF in vitro and tumor formation in vivo (Telang et al., 1990; Telang et al., 1991; Zhai et al., 1993). It is noteworthy that clonally selected 1638N COL-Cl1 cells exhibited a high incidence of tumors upon in vivo transplantation. Thus, the 1638N COL-Cl1 represent a preneoplastic phenotype, and AICF, a modulatable surrogate end point biomarker for the risk of carcinogenic transformation, similar to that reported for mammary epithelial cells (Jinno et al., 1999; Kadare et al., 2002; Kadare et al., 2003).

In a previously published study the ApC mutant parental 1638N COL cells demonstrated susceptibility to growth inhibition by several mechanistically distinct chemopreventive agents used as single agents (Kadare et al., 2002). The mechanistically distinct preventive/therapeutic compounds CLX and 5-FU have documented efficacy as single agents in the clinical management of colon cancer (Steinbach et al., 2000; Takimoto et al., 1999; Diasio and Harris, 1989). Long-term high dose therapy with these compounds, however, is associated with adverse toxicity that compromises patient compliance (Solomon et al., 2005; Diasio and Harris, 1989; Takimoto et al., 1999). The IC50 values obtained in the present cell culture model compare favorably with clinically or experimentally achievable plasma levels, thereby providing clinical relevance for the responsiveness of the present cell culture model to CLX and 5-FU.

Preclinical animal studies with low dose combinations of mechanistically distinct compounds have demonstrated enhanced efficacy with minimal toxicity (Torrance et al., 2000; Swamy et al., 2006). Consistent with the above observations, data from the present experiments provide proof-of-principle evidence that combination of low dose CLX+5-FU exhibits greater efficacy for cytostatic growth arrest and for inhibition of AICF, relative to that exhibited by these compounds used independently. Furthermore, the higher efficacy of the CLX+5-FU combination is predominantly due to enhanced G1 phase arrest and inhibition of S+G2/M phase of the cell cycle. The molecular mechanisms responsible for the observed cell cycle modulation and synergistic/additive interactions of the CLX+5-FU combination, however, remain to be identified.

In conclusion, the data generated from this study demonstrate that aberrantly proliferative ApC mutant cells display an increased risk for carcinogenic transformation, and that the risk is modifiable by combination of mechanistically distinct preventive/therapeutic compounds. These data therefore validate a novel alternative cell culture approach to rapidly prioritize efficacious preventive/therapeutic agents and, thereby, reduce and refine traditional animal studies identifying interventional strategies for future clinical trials on prevention/therapy of colon cancer.

References
Jinno, H., Steiner, M. G., Mehta, R. G. et al. (1999). Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed hu-
man mammary epithelial cells by N-(4-hydroxyphenyl) retinamide. Carcinogenesis 20, 229-236.

